Abstract

Cyclization provides a general strategy for improving the proteolytic stability, cell membrane permeability and target binding affinity of peptides. Insertion of a stable, non-reducible linker into a disulphide bond is a commonly used approach for cyclizing phage-displayed peptides. However, among the vast collection of cysteine reactive linkers available, few provide the selectivity required to target specific cysteine residues within the peptide in the phage display system, whilst sparing those on the phage capsid. Here, we report the development of a cyclopropenone-based proximity-driven chemical linker that can efficiently cyclize synthetic peptides and peptides fused to a phage-coat protein, and cyclize phage-displayed peptides in a site-specific manner, with no disruption to phage infectivity. Our cyclization strategy enables the construction of stable, highly diverse phage display libraries. These libraries can be used for the selection of high-affinity cyclic peptide binders, as exemplified through model selections on streptavidin and the therapeutic target αvβ3.

Cyclization provides a general strategy for improving peptide proteolytic stability, cell membrane permeability and target binding affinity. Here the authors develop a cyclopropenone-based proximity-driven chemical linker for the site-specific cyclization of phage-displayed peptides.

Details

Title
Proximity-driven site-specific cyclization of phage-displayed peptides
Author
Brown, Libby 1 ; Vidal, Aldrin V. 2   VIAFID ORCID Logo  ; Dias, Ana Laura 3   VIAFID ORCID Logo  ; Rodrigues, Tiago 3   VIAFID ORCID Logo  ; Sigurdardottir, Anna 4   VIAFID ORCID Logo  ; Journeaux, Toby 2 ; O’Brien, Siobhan 5 ; Murray, Thomas V. 5   VIAFID ORCID Logo  ; Ravn, Peter 6 ; Papworth, Monika 7 ; Bernardes, Gonçalo J. L. 8   VIAFID ORCID Logo 

 University of Cambridge, Yusuf Hamied Department of Chemistry, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934); The Discovery Centre; Cambridge Biomedical Campus, Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK (GRID:grid.5335.0) 
 University of Cambridge, Yusuf Hamied Department of Chemistry, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934) 
 Universidade de Lisboa, Instituto de Investigação do Medicamento (iMed), Faculdade de Farmácia, Lisboa, Portugal (GRID:grid.9983.b) (ISNI:0000 0001 2181 4263) 
 The Discovery Centre; Cambridge Biomedical Campus, Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK (GRID:grid.9983.b) 
 The Discovery Centre; Cambridge Biomedical Campus, Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK (GRID:grid.5335.0) 
 The Discovery Centre; Cambridge Biomedical Campus, Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK (GRID:grid.5335.0); Department of Biotherapeutic Discovery, H. Lundbeck A/S, Valby, Denmark (GRID:grid.424580.f) (ISNI:0000 0004 0476 7612) 
 The Discovery Centre; Cambridge Biomedical Campus, Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK (GRID:grid.424580.f) 
 University of Cambridge, Yusuf Hamied Department of Chemistry, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934); Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal (GRID:grid.5335.0) 
Pages
7308
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3096585831
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.