It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Populations of anadromous fish have become landlocked in relatively recent geological history (<14,000 years), but the evolutionary impacts of this altered lifecycle on traits underlying seawater performance have not been established. In order to examine the effects of relaxed selection on seawater traits, anadromous and landlocked Atlantic salmon were reared under identical conditions and examined for differences in seawater performance and its underlying physiological and endocrine control during the time of spring downstream migration. Salinity tolerance, survival and initial growth in seawater were greater in anadromous than in landlocked salmon. Abundance of the seawater isoform of gill Na+/K+-ATPase increased in spring in both strains but was greater in anadromous salmon. Hormones associated with seawater acclimation (adrenocorticotropic hormone, cortisol and growth hormone) increased in spring in both strains but were higher in anadromous salmon, whereas plasma thyroid hormones did not differ. Hypothalamic urotensin I mRNA levels also increased in spring and were higher in the anadromous strain. The results provide evidence that salinity tolerance and associated physiological traits are regulated by seasonal stimulation of the hypothalamic-pituitary-interrenal axis, and that relaxed selection on seawater entry traits has decreased this stimulation in landlocked salmon.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, Turners Falls, USA
2 U.S. Fish and Wildlife Service, Lake Champlain Fish and Wildlife Conservation Office, Essex Junction, USA
3 University of Gothenburg, Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, Gothenburg, Sweden (GRID:grid.8761.8) (ISNI:0000 0000 9919 9582)
4 University of Guelph, Department of Integrative Biology, Ontario, Canada (GRID:grid.34429.38) (ISNI:0000 0004 1936 8198)