Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to study the effect of pressure on the ignition and combustion process of CL-20/NEPE solid propellant, the ignition delay, burning rate, and maximum combustion temperature of different solid propellant formulations with an ambient pressure of 0.1~8.0 MPa were measured experimentally by a solid propellant laser ignition experiment system, and the agglomeration process and the characteristics of condensed phase combustion products were analyzed. The experimental results show that, with the increase of pressure, the ignition-delay time decreases, and the burning rate and the maximum combustion temperature increase. With the increase of pressure, the influence on propellant ignition and combustion characteristics becomes smaller. In the experiment, the dynamic agglomeration phenomenon of aluminum particles in the propellant was recorded by a high-speed camera combined with a microscopic camera lens, and the dynamic agglomeration phenomenon of the combustion surface of the propellant and the dynamic agglomeration phenomenon, after the initial agglomeration was separated from the surface, were analyzed and expounded. Based on the experiment and combined with the agglomeration phenomenon, a mathematical model capable of predicting the particle size of aluminum aggregates was proposed.

Details

Title
The Effect of 0–8 MPa Environmental Pressure on the Ignition and Combustion Process of CL20/NEPE Solid Propellant
Author
Cai, Wenxiang; Li, Wei; Wang, Zhixiang
First page
672
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097795034
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.