Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chickpeas (Cicer arietinum L.) are an important legume crop known for their rich nutrient content, including proteins, carbohydrates, and minerals. Thus, they are enjoyed by people worldwide. In recent years, the production scale of chickpeas has been growing gradually. The planting area of chickpeas represents roughly 35–36% of the total planting area, and the output of the beans is roughly 47–48%. However, the growth and development process of chickpeas is limited by a number of factors, including high temperature, drought, salt stress, and so forth. In particular, high temperatures can reduce the germination rate, photosynthesis, seed setting rate, and filling rate of chickpeas, restricting seed germination, plant growth, and reproductive growth. These changes lead to a decrease in the yield and quality of the crop. Heat shock proteins (HSPs) are small proteins that play an important role in plant defense against abiotic stress. Therefore, in the present study, HSP20 gene family members were identified based on the whole-genome data of chickpeas, and their chromosomal positions, evolutionary relationships, promoter cis-acting elements, and tissue-specific expression patterns were predicted. Subsequently, qRT-PCR was used to detect and analyze the expression characteristics of HSP20 genes under different temperature stress conditions. Ultimately, we identified twenty-one HSP20 genes distributed on seven chromosomes, and their gene family members were found to be relatively conserved, belonging to ten subfamilies. We also found that CaHSP20 promoter regions have many cis-acting elements related to growth and development, hormones, and stress responses. In addition, under high-temperature stress, the relative expression of CaHSP20-17, CaHSP20-20, CaHSP20-7, CaHSP20-3, and CaHSP20-12 increased hundreds or even thousands of times as the temperature increased from 25 °C to 42 °C. Among them, excluding CaHSP20-5, the other five genes all contain 1-2 ABA cis-regulatory elements. This finding indicates that CaHSP20s are involved in the growth and development of chickpeas under heat stress, and the mechanisms of their responses to high-temperature stress may be related to hormone regulation. The results of the present study lay the foundation for exploring HSP20 gene family resources and the molecular mechanisms of heat resistance in chickpeas. Our results can also provide a theoretical basis for breeding high-temperature-resistant chickpea varieties and provide valuable information for the sustainable development of the global chickpea industry.

Details

Title
Genome-Wide Identification and Expression Analysis of Heat Shock Protein 20 (HSP20) Gene Family in Response to High-Temperature Stress in Chickpeas (Cicer arietinum L.)
Author
Liu, Sushuang 1 ; Wu, Yizhou 1 ; Yang, Li 2 ; Zhang, Zaibao 1 ; He, Dandan 1 ; Yan, Jianguo 3 ; Zou, Huasong 1 ; Liu, Yanmin 1 

 Department of Life Sciences and Health, Huzhou College, Huzhou 313000, China; [email protected] (S.L.); [email protected] (Y.W.); [email protected] (Z.Z.); [email protected] (D.H.); [email protected] (H.Z.) 
 College of Life Science, Huzhou University, Huzhou 313000, China; [email protected] 
 Huzhou Lvteng Ecological Agriculture Co., Ltd., Huzhou 313000, China; [email protected] 
First page
1696
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097804049
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.