Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The aim of this study was to experimentally assess the luminescence efficiency of a cerium fluoride (CeF3) inorganic scintillator in crystal form as a possible alternative to high-luminescence but hygroscopic cerium bromide (CeBr3). The experiments were performed under typical diagnostic radiology X-rays (50–140 kVp). Parameters such as the crystal’s absolute luminescence efficiency (AE) and the spectral matching with a series of optical detectors were examined. The replacement of bromine with fluorine appeared to drastically reduce the AE of CeF3 compared to CeBr3 and other commercially available inorganic scintillators such as bismuth germanate (Bi4Ge3O12-BGO). CeF3 reaches a maximum luminescence efficiency value of only 0.8334 efficiency units (EUs) at 140 kVp, whereas the corresponding values for CeBr3 and BGO were 29.49 and 3.41, respectively. Furthermore, the emission maximum (at around 313 nm) moved towards the lower part of the visible spectrum, making CeF3 suitable for spectral coupling with various photocathodes and photomultipliers applied in nuclear medicine detectors, but completely unsuitable for spectral matching with CCDs and CMOS. The obtained luminescence efficiency results denote that CeF3 cannot be applied in medical imaging applications covering the range 50–140 kVp; however, examination of its luminescence output in the nuclear medicine energy range (~70 to 511 keV) could reveal possible applicability in these modalities.

Details

Title
Luminescence Efficiency and Spectral Compatibility of Cerium Fluoride (CeF3) Inorganic Scintillator with Various Optical Sensors in the Diagnostic Radiology X-ray Energy Range
Author
Ntoupis, Vasileios 1 ; Michail, Christos 1   VIAFID ORCID Logo  ; Kalyvas, Nektarios 1   VIAFID ORCID Logo  ; Bakas, Athanasios 2   VIAFID ORCID Logo  ; Kandarakis, Ioannis 1 ; Fountos, George 1 ; Valais, Ioannis 1   VIAFID ORCID Logo 

 Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12210 Athens, Greece; [email protected] (V.N.); [email protected] (N.K.); [email protected] (I.K.); [email protected] (G.F.); [email protected] (I.V.) 
 Department of Biomedical Sciences, University of West Attica, Ag. Spyridonos, 12210 Athens, Greece; [email protected] 
First page
230
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097930840
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.