Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Facial biometrics are widely used to reliably and conveniently recognize people in photos, in videos, or from real-time webcam streams. It is therefore of fundamental importance to detect synthetic faces in images in order to reduce the vulnerability of biometrics-based security systems. Furthermore, manipulated images of faces can be intentionally shared on social media to spread fake news related to the targeted individual. This paper shows how fake face recognition models may mainly rely on the information contained in the background when dealing with generated faces, thus reducing their effectiveness. Specifically, a classifier is trained to separate fake images from real ones, using their representation in a latent space. Subsequently, the faces are segmented and the background removed, and the detection procedure is performed again, observing a significant drop in classification accuracy. Finally, an explainability tool (SHAP) is used to highlight the salient areas of the image, showing that the background and face contours crucially influence the classifier decision.

Details

Title
Generated or Not Generated (GNG): The Importance of Background in the Detection of Fake Images
Author
Tanfoni, Marco  VIAFID ORCID Logo  ; Ceroni, Elia Giuseppe  VIAFID ORCID Logo  ; Marziali, Sara  VIAFID ORCID Logo  ; Pancino, Niccolò  VIAFID ORCID Logo  ; Maggini, Marco  VIAFID ORCID Logo  ; Bianchini, Monica  VIAFID ORCID Logo 
First page
3161
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3097931199
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.