Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper investigates the performance of a novel viscous passive damping solution to mitigate the chatter vibrations issue in the context of turning thin-walled cylindrical shell components for aerospace and other industries. This study involves the use of two different viscous fluids, motor oil and silicone oil, which have viscosities of 102 cSt and 350 cSt, respectively, to fill the in-house developed tube components with the aim of improving machining performance. Fast Fourier Transform (FFT) graphs were studied for chatter analysis, and surface roughness parameters such as average surface roughness (Ra) and mean roughness depth (Rz) were considered for studying the effectiveness of the viscous damping fluids. The results obtained with viscous damping were then compared with an undamped/unfilled tube with the same geometry. The cutting experiments showed that the motor oil reduced the excessive vibrations while silicone oil was able to eliminate them. For the tube with motor oil, the magnitude of the process sound at chatter frequency was reduced by 6.6 times as compared to an unfilled tube, whereas for the tube with silicone oil, the amplitude at chatter frequency was reduced by 14.8 times. Moreover, the surface quality of the tubes with motor oil and silicone oil shows almost equal improvement, indicating the need for future research on the type and amount of viscous fluids for implementing the concept in real cases.

Details

Title
Chatter Mitigation in Turning Slender Components Using Viscous Fluids
Author
Matas Griskevicius; Kharka, Vishal; Kilic, Zekai Murat  VIAFID ORCID Logo 
First page
128
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
25044494
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098053707
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.