Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The milling of thin-wall geometries has been a challenge due to inherent chatter vibrations and workpiece deflections. Moreover, tool path generation strategies in CAD-CAM systems are not able to fully address all such concerns. The objective of this study is to demonstrate potential 5-axis milling tool path strategies, which do not exist in the conventional tool path generation. The demonstration is performed for increased efficiency in milling of thin-wall features considering the main limitation of chatter. The effects of varying workpiece dynamics on milling stability are shown in case studies through simulations and cutting experiments. Based on the simulation results, tool path strategies are developed. The effect of tool path generation and the relation to parameter selection are highlighted. Most of the discussion relies on previously reported experimental results. The results showed that by tailoring the tool path considering the concerns and limitations associated with thin-wall part structure and geometry, it is possible to increase productivity by at least two folds.

Details

Title
Tool Path Strategies for Efficient Milling of Thin-Wall Features
Author
Lutfi Taner Tunc 1   VIAFID ORCID Logo  ; Gulmez, Deniz Arda 2 

 Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected]; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye 
 Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] 
First page
169
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
25044494
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098054014
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.