Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The popularity of Structure from Motion (SfM) techniques has significantly advanced 3D reconstruction in various domains, including construction site mapping. Central to SfM, is the feature extraction and matching process, which identifies and correlates keypoints across images. Previous benchmarks have assessed traditional and learning-based methods for these tasks but have not specifically focused on construction sites, often evaluating isolated components of the SfM pipeline. This study provides a comprehensive evaluation of traditional methods (e.g., SIFT, AKAZE, ORB) and learning-based methods (e.g., D2-Net, DISK, R2D2, SuperPoint, SOSNet) within the SfM pipeline for construction site mapping. It also compares matching techniques, including SuperGlue and LightGlue, against traditional approaches such as nearest neighbor. Our findings demonstrate that deep learning-based methods such as DISK with LightGlue and SuperPoint with various matchers consistently outperform traditional methods like SIFT in both reconstruction quality and computational efficiency. Overall, the deep learning methods exhibited better adaptability to complex construction environments, leveraging modern hardware effectively, highlighting their potential for large-scale and real-time applications in construction site mapping. This benchmark aims to assist researchers in selecting the optimal combination of feature extraction and matching methods for SfM applications at construction sites.

Details

Title
Building Better Models: Benchmarking Feature Extraction and Matching for Structure from Motion at Construction Sites
Author
Carlos Roberto Cueto Zumaya 1   VIAFID ORCID Logo  ; Catalano, Iacopo 1   VIAFID ORCID Logo  ; Jorge Peña Queralta 2   VIAFID ORCID Logo 

 Department of Computing, Faculty of Technology, University of Turku, 20014 Turku, Finland; [email protected] (C.R.C.Z.); [email protected] (I.C.) 
 Department of Computing, Faculty of Technology, University of Turku, 20014 Turku, Finland; [email protected] (C.R.C.Z.); [email protected] (I.C.); Institute of Robotics and Intelligent Systems, ETH Zurich, 8092 Zurich, Switzerland 
First page
2974
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098191700
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.