Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the development of satellite technology, the importance of multi-temporal remote sensing (RS) image change detection (CD) in urban planning, environmental monitoring, and other fields is increasingly prominent. Deep learning techniques enable a profound exploration of the intrinsic features within hyperspectral (HS) data, leading to substantial enhancements in CD accuracy while addressing several challenges posed by traditional methodologies. However, existing convolutional neural network (CNN)-based CD approaches frequently encounter issues during the feature extraction process, such as the loss of detailed information due to downsampling, which hampers a model’s ability to accurately capture complex spectral features. Additionally, these methods often neglect the integration of multi-scale information, resulting in suboptimal local feature extraction and, consequently, diminished model performance. To address these limitations, we propose a multi-scale fusion network (MsFNet) which leverages dynamic spectral features for effective multi-temporal HS-CD. Our approach incorporates a dynamic convolution module with spectral attention, which adaptively modulates the receptive field size according to the spectral characteristics of different bands. This flexibility enhances the model’s capacity to focus on critical bands, thereby improving its ability to identify and differentiate changes across spectral dimensions. Furthermore, we develop a multi-scale feature fusion module which extracts and integrates features from deep feature maps, enriching local information and augmenting the model’s sensitivity to local variations. Experimental evaluations conducted on three real-world HS-CD datasets demonstrate that the proposed MsFNet significantly outperforms contemporary advanced CD methods in terms of both efficacy and performance.

Details

Title
MsFNet: Multi-Scale Fusion Network Based on Dynamic Spectral Features for Multi-Temporal Hyperspectral Image Change Detection
Author
Feng, Yining 1 ; Ni, Weihan 2 ; Song, Liyang 2 ; Wang, Xianghai 3   VIAFID ORCID Logo 

 School of Geography, Liaoning Normal University, Dalian 116029, China; [email protected] 
 School of Computer Science and Artificial Intelligence, Liaoning Normal University, Dalian 116029, China; [email protected] (W.N.); [email protected] (L.S.) 
 School of Geography, Liaoning Normal University, Dalian 116029, China; [email protected]; School of Computer Science and Artificial Intelligence, Liaoning Normal University, Dalian 116029, China; [email protected] (W.N.); [email protected] (L.S.) 
First page
3037
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3098195565
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.