Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To expand the development of characteristic extension products of Yunnan tea and improve the utilization rate of Yunnan tea resources, in this study, we compared the metabolite composition among raw Pu-erh tea, ripe Pu-erh tea prepared with glutinous rice (according to tea to glutinous rice ratio of 1:3), and ripe Pu-erh tea prepared with a mixture of sorghum, rice, glutinous rice, wheat, and corn as raw materials (according to a tea to glutinous rice ratio of 1:3). Rice flavor liquor prepared with 100% glutinous rice served as a control. The raw Pu-erh tea liquor (RAWJ), ripe Pu-erh tea liquor (RIPEJ), ripe Pu-erh tea mixed grain liquor (HHLSJ), and rice-flavor liquor (MJ) were all brewed by semi-solid fermentation. The non-volatile components of the liquor samples were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry as a broadly targeted metabolomics technique. A total of 691 metabolites were identified from the four samples. Among them, 674, 671, 633, and 667 species were detected in RAWJ, RIPEJ, HHLSJ, and MJ samples, respectively. Venn diagram analysis demonstrated 19, 21, and 14 unique metabolites in RAWJ, RIPEJ, and HHLSJ, respectively, compared with the metabolite composition of MJ. Flavonoids are the most important differential metabolite between tea liquor and rice-flavor liquor. This study provides a theoretical basis for the development of tea liquor products and offers insight into the difference in non-volatile components between tea liquor and rice-flavor liquor.

Details

Title
Analysis of Metabolite Differences in Different Tea Liquors Based on Broadly Targeted Metabolomics
Author
Li, Xiongyu 1 ; Niu, Miao 1 ; Yang, Hongyan 1 ; Zhou, Xianxiu 1 ; Ding, Jianliang 1 ; Xu, Yawen 2 ; Lv, Caiyou 1 ; Li, Jiahua 1 

 College of Tea Science, Yunnan Agricultural University, Kunming 650201, China; [email protected] (X.L.); [email protected] (M.N.); [email protected] (H.Y.); [email protected] (X.Z.); [email protected] (J.D.); [email protected] (C.L.) 
 College of Pu-Erh Tea, West Yunnan University of Applied Sciences, Puer 665000, China; [email protected] 
First page
2800
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3103918223
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.