Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The application of nanotechnology in agriculture has received much attention in order to improve crop yield, quality and food safety. In the present study, a Cd-tolerant endophytic fungus Colletotrichum fructicola KL19 was first ever reported to produce SeNPs, and the production conditions were optimized using the Box–Behnken design in the Response Surface Methodology (RSM-BBD), achieving a peak yield of 1.06 mM under optimal conditions of 2.62 g/20 mL biomass, 4.56 mM Na2SeO3, and pH 6.25. Following this, the properties of the biogenic SeNPs were elucidated by using TEM, DLS, and FTIR, in which the 144.8 nm spherical-shaped SeNPs were stabilized by different functional groups with a negative zeta potential of −18.3 mV. Furthermore, strain KL19 and SeNPs (0, 5, 10, 20 and 50 mg/L) were inoculated in the root zone of small-leaf spinach (Spinacia oleracea L.) seedlings grown in the soil with 33.74 mg/kg Cd under controlled conditions for seven weeks. Impressively, compared with Cd stress alone, the strain KL19 and 5 mg/L SeNPs treatments significantly (p < 0.05) exhibited a reduction in Cd contents (0.62 and 0.50 folds) within the aboveground parts of spinach plants and promoted plants’ growth by improving the leaf count (0.92 and 1.36 folds), fresh weight (2.94 and 3.46 folds), root dry weight (4.00 and 5.60 folds) and root length (0.14 and 0.51 folds), boosting total chlorophyll synthesis (0.38 and 0.45 folds), enhancing antioxidant enzymes (SOD, POD) activities, and reducing the contents of reactive oxygen species (MDA, H2O2) in small-leaf spinach under Cd stress. Overall, this study revealed that utilizing endophytic fungus C. fructicola or its derived SeNPs could mitigate reactive oxygen species generation by enhancing antioxidant enzyme activity as well as diminish the absorption and accumulation of Cd in small-leaf spinach, promoting plant growth under Cd stress.

Details

Title
Endophytic Colletotrichum fructicola KL19 and Its Derived SeNPs Mitigate Cd-Stress-Associated Damages in Spinacia oleracea L.
Author
Wu, Yingxia  VIAFID ORCID Logo  ; Huang, Shiru; Tian, Wei; Yang, Shengyu; Shen, Wenshu; Dong, Jinyan
First page
2359
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3103946476
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.