Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Precision agriculture-based orchard management relies heavily on the accurate delineation of tree canopies, especially for high-value crops like mangoes. Traditional GIS and remote sensing methods, such as Object-Based Imagery Analysis (OBIA), often face challenges due to overlapping canopies, complex tree structures, and varied light conditions. This study aims to enhance the accuracy of mango orchard mapping by developing a novel deep-learning approach that combines fine-tuned object detection and segmentation techniques. UAV imagery was collected over a 65-acre mango orchard in Multan, Pakistan, and processed into an RGB orthomosaic with a 3 cm ground sampling distance. The You Only Look Once (YOLOv7) framework was trained on an annotated dataset to detect individual mango trees. The resultant bounding boxes were used as prompts for the segment anything model (SAM) for precise delineation of canopy boundaries. Validation against ground truth data of 175 manually digitized trees showed a strong correlation (R2 = 0.97), indicating high accuracy and minimal bias. The proposed method achieved a mean absolute percentage error (MAPE) of 4.94% and root mean square error (RMSE) of 80.23 sq ft against manually digitized tree canopies with an average size of 1290.14 sq ft. The proposed approach effectively addresses common issues such as inaccurate bounding boxes and over- or under-segmentation of tree canopies. The enhanced accuracy can substantially assist in various downstream tasks such as tree location mapping, canopy volume estimation, health monitoring, and crop yield estimation.

Details

Title
High-Precision Mango Orchard Mapping Using a Deep Learning Pipeline Leveraging Object Detection and Segmentation
Author
Muhammad Munir Afsar 1   VIAFID ORCID Logo  ; Asim Dilawar Bakhshi 2   VIAFID ORCID Logo  ; Muhammad Shahid Iqbal 3   VIAFID ORCID Logo  ; Hussain, Ejaz 1   VIAFID ORCID Logo  ; Iqbal, Javed 1 

 Institute of Geographical Information Systems, National University of Sciences and Technology, Islamabad 44000, Pakistan; [email protected] (E.H.); [email protected] (J.I.) 
 Department of Electrical Engineering, Military College of Signals, National University of Science and Technology, Rawalpindi 46000, Pakistan; [email protected] 
 Institute of Geo-Information and Earth Observation, ARID Agriculture University, Rawalpindi 46000, Pakistan; [email protected] 
First page
3207
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3104036159
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.