Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dryland occupies about 46% of the global land surface area (except Antarctica) and is the most vulnerable area to climate change. From the conditions of vegetation and land surface wetness and blown sand phenomena, a simple observation system was developed to monitor regional wind erosion and applied to Khuld of Mongolia, which is sensitive to drought and desertification. The system was composed of instruments that observed blown sand, vegetation amount, land surface wetness, and landscape features related to regional wind erosion. Sixteen blown sand and eight sandstorm events were evaluated from 5 March to 5 June 2023 (i.e., during the Asian dust season in northeast Asia). The normalized difference vegetation index and visible images showed that the vegetation amount was considerably less, and the developed moisture index related to land surface wetness indicated dry conditions. Combining the results of blown sand, these indices, and visible images, land surface conditions during the analysis period were likely to occur with blown sand events.

Details

Title
Development of a Simple Observation System to Monitor Regional Wind Erosion
Author
Kimura, Reiji 1 ; Liu, Jiaqi 1   VIAFID ORCID Logo  ; Ganzorig, Ulgiichimg 2 ; Moriyama, Masao 3 

 Arid Land Research Center, Tottori University, Tottori 6800001, Japan; [email protected] 
 Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar 15170, Mongolia; [email protected] 
 Graduate School of Engineering, Nagasaki University, Nagasaki 8528521, Japan; [email protected] 
First page
3331
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3104044050
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.