Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Multi-object tracking in satellite videos (SV-MOT) is an important task with many applications, such as traffic monitoring and disaster response. However, the widely studied multi-object tracking (MOT) approaches for general images can rarely be directly introduced into remote sensing scenarios. The main reasons for this can be attributed to the following: (1) the existing MOT approaches would cause a significant rate of missed detection of the small targets in satellite videos; (2) it is difficult for the general MOT approaches to generate complete trajectories in complex satellite scenarios. To address these problems, a novel SV-MOT approach enhanced by high-resolution feature fusion and a two-step association method is proposed. In the high-resolution detection network, a high-resolution feature fusion module is designed to assist detection by maintaining small object features in forward propagation. By utilizing features of different resolutions, the performance of the detection of small targets in satellite videos is improved. Through high-quality detection and the use of an adaptive Kalman filter, the densely packed weak objects can be effectively tracked by associating almost every detection box instead of only the high-score ones. The comprehensive experimental results using the representative satellite video datasets (VISO) demonstrate that the proposed HRTracker with the state-of-the-art (SOTA) methods can achieve competitive performance in terms of the tracking accuracy and the frequency of ID conversion, obtaining a tracking accuracy score of 74.6% and an ID F1 score of 78.9%.

Details

Title
HRTracker: Multi-Object Tracking in Satellite Video Enhanced by High-Resolution Feature Fusion and an Adaptive Data Association
Author
Wu, Yuqi 1 ; Liu, Qiaoyuan 2   VIAFID ORCID Logo  ; Sun, Haijiang 2 ; Xue, Donglin 2 

 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; [email protected] (Y.W.); [email protected] (Q.L.); [email protected] (H.S.); University of Chinese Academy of Sciences, Beijing 100049, China 
 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; [email protected] (Y.W.); [email protected] (Q.L.); [email protected] (H.S.) 
First page
3347
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3104044579
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.