Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In various practical applications, such as autonomous vehicle and unmanned aerial vehicle navigation, Global Navigation Satellite Systems (GNSSs) are commonly used for positioning. However, traditional GNSS positioning methods are often affected by disturbances due to external observational conditions. For instance, in areas with dense buildings, tree cover, or tunnels, GNSS signals may be obstructed, resulting in positioning failures or decreased accuracy. Therefore, improving the accuracy and stability of GNSS positioning in these complex environments is a critical concern. In this paper, we propose a novel multi-sensor fusion framework based on multi-frame residual optimization for GNSS/INS/LiDAR to address the challenges posed by complex satellite environments. Our system employs a novel residual detection and optimization method for continuous-time GNSS within keyframes. Specifically, we use rough pose measurements from LiDAR to extract keyframes for the global system. Within these keyframes, the multi-frame residuals of GNSS and IMU are estimated using the Median Absolute Deviation (MAD) and subsequently employed for the degradation detection and sliding window optimization of the GNSS. Building on this, we employ a two-stage factor graph optimization strategy, significantly improving positioning accuracy, especially in environments with limited GNSS signals. To validate the effectiveness of our approach, we assess the system’s performance on the publicly available UrbanLoco dataset and conduct experiments in real-world environments. The results demonstrate that our system can achieve continuous decimeter-level positioning accuracy in these complex environments, outperforming other related frameworks.

Details

Title
MFO-Fusion: A Multi-Frame Residual-Based Factor Graph Optimization for GNSS/INS/LiDAR Fusion in Challenging GNSS Environments
Author
Zou, Zixuan 1   VIAFID ORCID Logo  ; Wang, Guoshuai 1 ; Li, Zhenshuo 1 ; Zhai, Rui 2 ; Li, Yonghua 1   VIAFID ORCID Logo 

 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; [email protected] (Z.Z.); [email protected] (G.W.); [email protected] (Z.L.) 
 Network Department, China Unicom Shandong Branch, Jinan 250001, China; [email protected] 
First page
3114
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3104044627
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.