Content area

Abstract

In-memory computing (IMC) has been shown to be a promising approach for solving binary optimization problems while significantly reducing energy and latency. Building on the advantages of parallel computation, we propose an IMC-compatible parallelism framework inspired by parallel tempering (PT), enabling cross-replica communication to improve the performance of IMC solvers. This framework enables an IMC solver not only to improve performance beyond what can be achieved through parallelization, but also affords greater flexibility for the search process with low hardware overhead. We justify that the framework can be applied to almost any IMC solver. We demonstrate the effectiveness of the framework for the Boolean satisfiability (SAT) problem, using the WalkSAT heuristic as a proxy for existing IMC solvers. The resulting PT-inspired cooperative WalkSAT (PTIC-WalkSAT) algorithm outperforms the traditional WalkSAT heuristic in terms of the iterations-to-solution in 76.3% of the tested problem instances and its na\"ive parallel variant (PA-WalkSAT) does so in 68.4% of the instances. An estimate of the energy overhead of the PTIC framework for two hardware accelerator architectures indicates that in both cases the overhead of running the PTIC framework would be less than 1% of the total energy required to run each accelerator.

Details

1009240
Title
Distributed Binary Optimization with In-Memory Computing: An Application for the SAT Problem
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 3, 2024
Section
Computer Science; Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-05
Milestone dates
2024-09-13 (Submission v1); 2024-11-06 (Submission v2); 2024-12-03 (Submission v3)
Publication history
 
 
   First posting date
05 Dec 2024
ProQuest document ID
3106245815
Document URL
https://www.proquest.com/working-papers/distributed-binary-optimization-with-memory/docview/3106245815/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-06
Database
ProQuest One Academic