Content area

Abstract

Recent advancements in automatic code generation using large language models (LLMs) have brought us closer to fully automated secure software development. However, existing approaches often rely on a single agent for code generation, which struggles to produce secure, vulnerability-free code. Traditional program synthesis with LLMs has primarily focused on functional correctness, often neglecting critical dynamic security implications that happen during runtime. To address these challenges, we propose AutoSafeCoder, a multi-agent framework that leverages LLM-driven agents for code generation, vulnerability analysis, and security enhancement through continuous collaboration. The framework consists of three agents: a Coding Agent responsible for code generation, a Static Analyzer Agent identifying vulnerabilities, and a Fuzzing Agent performing dynamic testing using a mutation-based fuzzing approach to detect runtime errors. Our contribution focuses on ensuring the safety of multi-agent code generation by integrating dynamic and static testing in an iterative process during code generation by LLM that improves security. Experiments using the SecurityEval dataset demonstrate a 13% reduction in code vulnerabilities compared to baseline LLMs, with no compromise in functionality.

Details

1009240
Title
AutoSafeCoder: A Multi-Agent Framework for Securing LLM Code Generation through Static Analysis and Fuzz Testing
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Nov 5, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-11-06
Milestone dates
2024-09-16 (Submission v1); 2024-11-05 (Submission v2)
Publication history
 
 
   First posting date
06 Nov 2024
ProQuest document ID
3106552508
Document URL
https://www.proquest.com/working-papers/autosafecoder-multi-agent-framework-securing-llm/docview/3106552508/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-11-07
Database
ProQuest One Academic