Content area

Abstract

Register Transfer Level (RTL) code optimization is crucial for enhancing the efficiency and performance of digital circuits during early synthesis stages. Currently, optimization relies heavily on manual efforts by skilled engineers, often requiring multiple iterations based on synthesis feedback. In contrast, existing compiler-based methods fall short in addressing complex designs. This paper introduces RTLRewriter, an innovative framework that leverages large models to optimize RTL code. A circuit partition pipeline is utilized for fast synthesis and efficient rewriting. A multi-modal program analysis is proposed to incorporate vital visual diagram information as optimization cues. A specialized search engine is designed to identify useful optimization guides, algorithms, and code snippets that enhance the model ability to generate optimized RTL. Additionally, we introduce a Cost-aware Monte Carlo Tree Search (C-MCTS) algorithm for efficient rewriting, managing diverse retrieved contents and steering the rewriting results. Furthermore, a fast verification pipeline is proposed to reduce verification cost. To cater to the needs of both industry and academia, we propose two benchmarking suites: the Large Rewriter Benchmark, targeting complex scenarios with extensive circuit partitioning, optimization trade-offs, and verification challenges, and the Small Rewriter Benchmark, designed for a wider range of scenarios and patterns. Our comparative analysis with established compilers such as Yosys and E-graph demonstrates significant improvements, highlighting the benefits of integrating large models into the early stages of circuit design. We provide our benchmarks at https://github.com/yaoxufeng/RTLRewriter-Bench.

Details

1009240
Title
RTLRewriter: Methodologies for Large Models aided RTL Code Optimization
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Sep 4, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-09-19
Milestone dates
2024-09-04 (Submission v1)
Publication history
 
 
   First posting date
19 Sep 2024
ProQuest document ID
3106853695
Document URL
https://www.proquest.com/working-papers/rtlrewriter-methodologies-large-models-aided-rtl/docview/3106853695/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-09-20
Database
ProQuest One Academic