Full Text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A comprehensive understanding of spatiotemporal runoff changes in the Yarlung Zangbo (YZ) basin in the southern Tibetan Plateau (TP) at a sub-basin scale, amidst varying climatic and cryospheric conditions, is imperative for effective water resources management. However, spatiotemporal differences of runoff composition and change and their attribution within the YZ basin have not been extensively explored, primarily due to the lack of hydrometeorological observations, especially in the downstream region. In this study, we investigated historical and future evolution of annual and seasonal total water availability, as well as glacier runoff and snowmelt contributions across six sub-basins of the YZ, with a particular focus on the comparison between the upstream Nuxia (NX) basin and the downstream Nuxia–Pasighat (NX-BXK) basin, based on a newly generated precipitation dataset and a well-validated model with streamflow, glacier mass, and snow cover observations. Our findings revealed that large spatiotemporal differences in changes exist within the YZ basin for 1971–2020. Firstly, runoff generation was dominated by rainfall runoff throughout the YZ basin, with glacier runoff playing a more important role in the annual total runoff (19 %) in the NX-BXK sub-basin compared to other sub-basins. Notably, glacier runoff contributed 52 % of the total runoff at the Pasighat outlet of the YZ basin. Secondly, annual runoff exhibited an increasing trend in the NX basin but a decreasing trend in the NX-BXK, primarily attributed to rainfall runoff changes influenced by atmospheric moisture. Glacier runoff enhanced water supply by offsetting the decreasing contribution from rainfall. Total runoff will consistently increase (27–100 mm (10 yr)-1) across the sub-basins through the 21st century, resulting from increased rainfall runoff and a minor effect of increased snowmelt and glacier runoff.

Details

Title
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
Author
Sun, He 1   VIAFID ORCID Logo  ; Yao, Tandong 2 ; Su, Fengge 2 ; Yang, Wei 2 ; Chen, Deliang 3   VIAFID ORCID Logo 

 State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China 
 State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100101, China 
 Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg 405 30, Sweden 
Pages
4361-4381
Publication year
2024
Publication date
2024
Publisher
Copernicus GmbH
ISSN
10275606
e-ISSN
16077938
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3108894847
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.