Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Image classification is an important application for deep learning. With the advent of quantum technology, quantum neural networks (QNNs) have become the focus of research. Traditional deep learning-based image classification involves using a convolutional neural network (CNN) to extract features from the image and a multi-layer perceptron (MLP) network to create the decision boundaries. However, quantum circuits with parameters can extract rich features from images and also create complex decision boundaries. This paper proposes a hybrid QNN (H-QNN) model designed for binary image classification that capitalizes on the strengths of quantum computing and classical neural networks. Our H-QNN model uses a compact, two-qubit quantum circuit integrated with a classical convolutional architecture, making it highly efficient for computation on noisy intermediate-scale quantum (NISQ) devices that are currently leading the way in practical quantum computing applications. Our H-QNN model significantly enhances classification accuracy, achieving a 90.1% accuracy rate on binary image datasets. In addition, we have extensively evaluated baseline CNN and our proposed H-QNN models for image retrieval tasks. The obtained quantitative results exhibit the generalization of our H-QNN for downstream image retrieval tasks. Furthermore, our model addresses the issue of overfitting for small datasets, making it a valuable tool for practical applications.

Details

Title
H-QNN: A Hybrid Quantum–Classical Neural Network for Improved Binary Image Classification
Author
Hafeez, Muhammad Asfand; Arslan Munir  VIAFID ORCID Logo  ; Ullah, Hayat  VIAFID ORCID Logo 
First page
1462
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
26732688
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110288667
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.