Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The real-time monitoring and evaluation of water quality provides a scientific basis for water resource management and promotes regional sustainable development. This study established a database using Landsat-8 satellite data and water quality data from the Ningxia Yellow River basin in China, spanning 2021 to 2023, and this paper proposes a custom residual convolutional neural network model with a hybrid attention mechanism, referred to as PCWA-ResCNN. The accuracy of the model in predicting turbidity, permanganate, ammonia nitrogen, and dissolved oxygen concentration was more than 95%. Compared to convolutional neural networks and long short-term memory models, this model performed better in predicting water quality parameters with significantly improved prediction performance. In terms of spatial distribution, the pollution degree in the middle reaches of the basin is relatively serious. However, the overall water quality is good, being mainly Class I and Class II water quality. The hybrid model established in this paper can better capture the complex nonlinear relationship between the observed values and the surface water reflectance, showing strong robustness. This model can be used for the water quality monitoring of complex inland rivers and lakes, and it can also provide effective support for relevant government departments to formulate scientific and reasonable water quality management policies.

Details

Title
Enhanced Water Quality Inversion in the Ningxia Yellow River Basin Using a Hybrid PCWA-ResCNN Model: Insights from Landsat-8 Data
Author
Li, Qi 1 ; Guo, Zhonghua 1 ; Li, Jialong 1 ; Li, Xiaojun 1 ; Ban, Bo 1 

 School of Electronics and Electrical Engineering, Ningxia University, Yinchuan 750021, China; [email protected] (Q.L.); [email protected] (J.L.); [email protected] (X.L.); [email protected] (B.B.); Key Laboratory of Desert Information Intelligent Perception, Ningxia University, Yinchuan 750021, China 
First page
8264
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110343973
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.