Full Text

Turn on search term navigation

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A self-driving vehicle can navigate autonomously in smart cities without the need for human intervention. The emergence of Autonomous Connected Vehicles (ACVs) poses a substantial threat to public and passenger safety due to the possibility of cyber-attacks, which encompass remote hacking, manipulation of sensor data, and probable disablement or accidents. The sensors collect data to facilitate the network’s recognition of local landmarks, such as trees, curbs, pedestrians, signs, and traffic lights. ACVs gather vast amounts of data, encompassing the exact geographical coordinates of the vehicle, captured images, and signals received from various sensors. To create a fully autonomous system, it is imperative to intelligently integrate several technologies, such as sensors, communication, computation, machine learning (ML), data analytics, and other technologies. The primary issues in ACVs involve data privacy and security when instantaneously exchanging substantial volumes of data. This study investigates related data security and privacy research in ACVs using the Blockchain-enabled Federated Reinforcement Learning (BFRL) framework. This paper provides a literature review examining data security and privacy in ACVs and the BFRL framework that can be used to protect ACVs. This study presents the integration of FRL and Blockchain (BC) in the context of smart cities. Furthermore, the challenges and opportunities for future research on ACVs utilising BFRL frameworks are discussed.

Details

Title
Data Privacy and Security in Autonomous Connected Vehicles in Smart City Environment
Author
Alam, Tanweer  VIAFID ORCID Logo 
First page
95
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
25042289
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110344128
Copyright
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.