It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent advances in genomics now allow for the identification of the genes and mutations that underlie the heritability of agronomically important traits in livestock. The corresponding genes are said to map to Quantitative Trait Loci (QTL), and the mutations referred to as Quantitative Trait Nucleotides (QTN). The most commonly used approach relies on positional cloning which typically proceeds in three steps: QTL mapping by linkage analysis, QTL fine-mapping by linkage disequilibrium or association analysis, and QTN identification combining haplotype analysis and functional assays. Knowledge of QTL and QTN provides insights into the genetic architecture of complex traits and physiology of production traits, and opens novel possibilities for enhanced selection referred to as Marker Assisted Selection (MAS).
This thesis is devoted to QTN identification of a QTL that was previously mapped to pig chromosome 2 and fine-mapped to a 250 Kb segment encompassing the imprinted IGF2 gene. The QTL was shown to have a major post-natal effect on muscle mass and fat deposition, and to be subject to parental imprinting as only the padumnal chromosome affects the phenotype.To identify the QTN we have first generated 32 Kb and 56 Kb of finished porcine sequence encompassing the IGF2 and H19genes, respectively. The corresponding sequences were annotated including definition of gene models, identification of interspersed repeats and determination of 97 sequence elements that are highly conserved between pig, human and mouse.
We have then resequenced 28 Kb encompassing the IGF2 gene for 15 boar chromosomes for which the QTL genotype had been determined by progeny-testing or Marker Assisted Segregation Analysis (MASA). This revealed 258 polymorphisms of which only one (Int3-3072G>A) cosegregated perfectly with QTL genotype. The corresponding single nucleotide polymorphism (SNP) is a G to A transition affecting one of the highly conserved sequence elements located just downstream of differentially methylated region 1 in intron 3. We have demonstrated that the Int3-3072 A allele associated with increased muscle mass is also associated with increased IGF2 mRNA levels in post-natal striated muscle (but not in pre-natal muscle nor in pre- and post-natal liver). However, the Int3-3072G>A SNP does not alter imprinting nor allele-specific methylation. Using a luciferase reporter assay, we then demonstrated that the Int3-3072 A allele reduces the cis activity of a silencer element, and using an electrophoretic mobility shift assay (EMSA), that it abrogates binding of a nuclear factor assumed to be a trans-acting silencing factor. Taken together both genetic and functional evidence strongly support the conclusion that the Int3-3072G>A SNP is the causative SNP.
The thesis is concluded by a discussion that (i) highlights the factors that make domestic animals a unique resource for the molecular dissection of complex phenotypes, (ii) comments the Asian origin of the Int3-3072A allele associated with increased muscle mass, (iii) describes recent advances in characterizing the trans-acting silencing factor binding to the Int3-3072G allele, (iv) pinpoints statistical issues related to the detection of imprinted QTL, (v) reports on the utility of the Int3-3072G>A SNP for MAS applied to pig breeding, and (vi) makes projections on how latest progress in genome analysis will affect positional identification of QTN in the near future.





