Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Damage to buildings and infrastructure caused by freeze–thaw cycles is a common problem in cold regions. To counteract this, multi-stage phase change material (PCM) aggregate concrete has gained attention for its potential in structural protection. PCM concrete is a type of intelligent concrete that regulates and controls the temperature by incorporating PCM. PCM aggregate can efficiently absorb and release significant amounts of heat within a defined temperature range. This study explored the feasibility of using agricultural waste rice husk ash (RHA) and industrial waste fly ash (FA) to produce PCM concrete. The combined use of RHA and FA with multi-stage PCM aggregate concrete allowed the two materials, pozzolanic materials and PCM, which have different approaches to improving the freeze resistance of concrete, to be effectively utilized together and synergistically enhance the durability and energy efficiency of buildings in cold regions. An experimental program was conducted to prepare PCM concrete by replacing cement with 5%, 10% and 15% RHA and 10%, 20% and 30% FA in different mixtures. The results show that when the replacement amounts of RHA and FA are both 10%, the compressive strength of the concrete can be effectively improved, while the thermal conductivity and thermal diffusivity are reduced. The incorporation of RHA and FA improved the thermal regulation of PCM concrete. Strength loss, relative dynamic elastic modulus (RDEM) loss and mass loss were all minimal with RHA at 15% and FA at 10% replacement.

Details

Title
Synergistic Freeze-Resistant Strategy of Multi-Stage PCM Concrete Incorporated with Rice Husk Ash and Fly Ash
Author
Hong, Zhilong 1   VIAFID ORCID Logo  ; Wang, Sheliang 2 ; Honghao Ying 2   VIAFID ORCID Logo  ; Lu, Zhe 2   VIAFID ORCID Logo  ; Liu, Bo 3 ; Xu, Jin 1 

 School of Civil Engineering, Xijing University, Xi’an 710123, China 
 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; [email protected] (S.W.); [email protected] (Z.L.) 
 China Railway 20th Bureau Group Co., Ltd., Xi’an 710016, China; [email protected] 
First page
2604
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110409774
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.