Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An automated quality control pre-processing algorithm for removing non-weather radar echoes from airborne Doppler radar data has been developed. The proposed algorithm can significantly reduce the time and experience level required for interactive radar data editing prior to dual-Doppler wind synthesis or data assimilation. As important as reducing the time required and skill level necessary to process an airborne Doppler dataset can be, the quality of the automated analysis is paramount. Retrieved wind data, recovered perturbation pressure data (with associated momentum check values) and correlation coefficients were computed. To quantitatively test the quality of the automated quality control algorithm, spatial Pearson correlation coefficients and momentum check values were computed. Four different (published) Electra Doppler Radar (ELDORA) datasets of convective echoes were used to stress the algorithm. Four distinct threshold levels for data removal in the automated quality control algorithm were applied to each of four ELDORA datasets. The algorithm threshold levels were labeled as follows: extremely low, low, medium, and high. Extremely low algorithm cases were deemed necessary during the data analyses and were added to the low, medium and high cases. A description of each case and the differences in the perturbation pressure momentum check values and correlation coefficients between the interactively edited fields were computed. These comparisons along with a subjective visual inspection show that the automated quality control algorithm can produce an analysis comparable—and in some cases superior—to an interactive analysis when used properly. A key benefit of this algorithm is that the skill level of a relatively inexperienced airborne radar meteorologist may be effectively increased by using the SOLO QC algorithm.

Details

Title
Quantitative Testing of a SOLO-Based Automated Quality Control Algorithm for Airborne Tail Doppler Radar Data
Author
Pasken, Robert; Woodford, Richard
First page
130
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22251154
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110431778
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.