Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metal matrix composites (MMCs) epitomize a promising class of resources in modern manufacturing, offering an enhanced strength-to-weight ratio and high-temperature performance which make them ideal for applications demanding over conventional metals. However, their machining presents significant challenges due to their inherent material properties. The conventional machining methods including turning, milling, drilling, shaping, and the grinding of MMCs pose several challenges, facing limitations in terms of sustainability and efficiency. This paper explores the current perspective and prospects of the conventional machining techniques applied to MMCs, emphasizing sustainable manufacturing practices. Key aspects include the challenges posed by MMCs’ inherent heterogeneity, the MMC materials used, the MMC manufacturing process, the cutting constraints employed, tool wear, surface unevenness, surface integrity, and high energy consumption throughout machining. The study also explores promising advancements in tooling materials, cutting parameters’ optimization, innovative machining techniques aimed at minimizing the environmental impact and maximizing material utilization, and the strategies developed to overcome these challenges. The paper concludes by highlighting optimizing tools, and processes, and adopting emerging optimization techniques and opportunities for further research aimed at the industry, allowing it to move towards more efficient, eco-friendly production methods.

Details

Title
Conventional Machining of Metal Matrix Composites towards Sustainable Manufacturing—Present Scenario and Future Prospects
Author
Endalkachew Mosisa Gutema 1   VIAFID ORCID Logo  ; Lemu, Hirpa G 2   VIAFID ORCID Logo 

 Department of Mechanical Engineering, College of Engineering and Technology, Wollega University, Nekemte P.O. Box 395, Ethiopia; [email protected]; Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway 
 Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway 
First page
356
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110518128
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.