Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Brown-rot fungi are large fungi that can decompose the cell walls of wood; they are notable for their secretion of diverse and complex enzymes that synergistically hydrolyze natural wood cellulose molecules. Fomitopsis pinicola (F. pinicola) is a brown-rot fungus of interest for its ability to break down the cellulose in wood efficiently. In this study, through a combination of rDNA-ITS analysis and morphological observation, the wood decay pathogen infecting Korean pine (Pinus koraiensis Siebold and Zucc.) was identified. Endoglucanase (CMCase) and β-glucosidase were quantified using the DNS (3,5-Dinitrosalicylic acid) method, and the cellulase activity was optimized using a single-factor method and orthogonal test. The results revealed that the wood-decaying fungus NE1 identified was Fomitopsis pinicola with the ITS accession number OQ880566.1. The highest cellulase activity of the strain reached 116.94 U/mL under the condition of an initial pH of 6.0, lactose 15 g·L−1, KH2PO4 0.5 g·L−1, NH4NO3 15 g·L−1, MgSO4 0.5 g·L−1, VB1 0.4 g·L−1, inoculated two 5 mm fungal cakes in 80 mL medium volume cultured 28 °C for 5 days. This laid a foundation for improving the degradation rate of cellulose and biotransformation research, as well as exploring the degradation of cellulose by brown rot fungi.

Details

Title
Identification of a Fomitopsis pinicola from Xiaoxing’an Mountains and Optimization of Cellulase Activity
Author
Sun, Jing 1 ; Yang, Hong 2   VIAFID ORCID Logo  ; Ge-Zhang, Shangjie 3   VIAFID ORCID Logo  ; Chi, Yujie 4 ; Qi, Dawei 3 

 College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; [email protected] 
 Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150040, China; [email protected] 
 College of Science, Northeast Forestry University, Harbin 150040, China; [email protected] 
 College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan 663099, China 
First page
1673
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110526578
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.