It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Microvascular decompression (MVD) has proven efficacy in trigeminal neuralgia (TN) and hemifacial spasm (HFS). This study utilized computational fluid dynamics (CFD) to investigate the impact of MVD on wall shear stress (WSS) of responsible arteries (RAs) at the neurovascular contact (NVC). A total of 21 cases (10 TN, 11 HFS) were analyzed, involving RAs at NVC validated through intraoperative photographs. Hemodynamic parameters (WSS, vessel diameter, flow rate, pressure drop) was calculated using CFD for the RAs based on 3D silent-magnetic resonance angiograms. The NVC was segmented into NVC-proximal, NVC-site, and NVC-distal portions using simulated 3D CFD images that correlated with surgical observations. WSS ratios of NVC-site to NVC-proximal (NVC-site/proximal) was calculated both before and after MVD. Prior to MVD, WSS in the RA at the NVC displayed a peaked curve with a maximum at NVC-site; however, post MVD, it presented a smooth curve without peaks. The WSS ratio exhibited a significant decrease after MVD. The impact of MVD on WSS of RAs at NVC was evaluated in both TN and HFS cases. Analyzing the hemodynamics of RAs through CFD and identifying WSS peaks at NVC portions before MVD provided a more detailed and localized understanding of the morphologically depicted NVC.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Ryofukai Satoh Neurosurgical Hospital, Department of Neurological Surgery, Fukuyama, Japan (GRID:grid.482582.1)
2 Okayama Prefectural University, Department of Contemporary Welfare, Faculty of Health and Welfare, Okayama, Japan (GRID:grid.412338.f) (ISNI:0000 0004 0641 4714)
3 Okayama University Graduate School of Medicine, Department of Neurological Surgery, Okayama, Japan (GRID:grid.261356.5) (ISNI:0000 0001 1302 4472)