Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study introduces an innovative technique that merges computer vision with topology optimization to advance additive manufacturing. Employing advanced photogrammetry software, we obtain high-resolution images of the design domain, which are then used to develop accurate 3D models through meticulous scanning procedures. These models are transformed into an STL file format and remeshed using an adaptive algorithm within COMSOL 5.3 Multiphysics, facilitated by a custom MATLAB 2023 application. This integration achieves the optimal mesh resolution and precision in analytical assessments. We applied this technique to the design of a concrete pillar for 3D printing, targeting a 75% reduction in volume to improve the material efficiency and structural stability—critical factors for extraterrestrial applications. The design, captured with a 360-degree camera array, guided the MATLAB-based topology optimization process. By combining MATLAB’s optimization algorithms with COMSOL’s meshing and finite element analysis tools, we investigated various material-efficient configurations. The findings reveal a substantial volume reduction, especially in the central region of the design, effectively optimizing material utilization while preserving structural integrity. The optimization algorithm exhibited a swift and stable convergence, reaching near-optimal solutions within approximately 20 iterations.

Details

Title
Optimizing Additive Manufacturable Structures with Computer Vision to Enhance Material Efficiency and Structural Stability
Author
Musaddiq Al Ali 1   VIAFID ORCID Logo  ; Shimoda, Masatoshi 1   VIAFID ORCID Logo  ; Naguib, Marc 2 

 Department of Advance Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku-ku, Nagoya 468-8511, Aichi, Japan; [email protected] 
 Département de Mécanique et Ingénierie des Transports, Institut Supérieur de l’Automobile et des Transports, Université de Bourgogne, 58000 Nevers, France; [email protected] 
First page
1286
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
26733951
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110638059
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.