Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, the accuracy of visual SLAM (Simultaneous Localization and Mapping) technology has seen significant improvements, making it a prominent area of research. However, within the current RGB-D SLAM systems, the estimation of 3D positions of feature points primarily relies on direct measurements from RGB-D depth cameras, which inherently contain measurement errors. Moreover, the potential of triangulation-based estimation for ORB (Oriented FAST and Rotated BRIEF) feature points remains underutilized. To address the singularity of measurement data, this paper proposes the integration of the ORB features, triangulation uncertainty estimation and depth measurements uncertainty estimation, for 3D positions of feature points. This integration is achieved using a CI (Covariance Intersection) filter, referred to as the CI-TEDM (Triangulation Estimates and Depth Measurements) method. Vision-based SLAM systems face significant challenges, particularly in environments, such as long straight corridors, weakly textured scenes, or during rapid motion, where tracking failures are common. To enhance the stability of visual SLAM, this paper introduces an improved CI-TEDM method by incorporating wheel encoder data. The mathematical model of the encoder is proposed, and detailed derivations of the encoder pre-integration model and error model are provided. Building on these improvements, we propose a novel tightly coupled visual-inertial RGB-D SLAM with encoder integration of ORB triangulation and depth measurement uncertainties. Validation on open-source datasets and real-world environments demonstrates that the proposed improvements significantly enhance the robustness of real-time state estimation and localization accuracy for intelligent vehicles in challenging environments.

Details

Title
Visual-Inertial RGB-D SLAM with Encoder Integration of ORB Triangulation and Depth Measurement Uncertainties
Author
Zhan-Wu, Ma; Wan-Sheng, Cheng
First page
5964
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110693283
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.