Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Humans are unavoidably exposed to numerous different mutagenic DNA alkylating agents (AAs), but their role in the initiation of cancers is uncertain, in part due to difficulties in assessing human exposure. To address this, we have developed a screening method that measures promutagenic O6-alkylguanines (O6-AlkGs) in DNA and applied it to human DNA samples. The method exploits the ability of the Schizosaccharomyces pombe alkyltransferase-like protein (Atl1) to recognise and bind to a wide range of O6-AlkGs in DNA. We established an Atl1-based slot-blot (ASB) assay and validated it using calf thymus DNA alkylated in vitro with a range of alkylating agents and both calf thymus and human placental DNA methylated in vitro with temozolomide (TMZ). ASB signals were directly proportional to the levels of O6-meG in these controls. Pre-treatment of DNA with the DNA repair protein O6-methylguanine–DNA methyltransferase (MGMT) reduced binding of Atl1, confirming its specificity. In addition, MCF 10A cells were treated with 500 μM TMZ and the extracted DNA, analysed using the ASB, was found to contain 1.34 fmoles O6 -meG/μg DNA. Of six human breast tumour DNA samples assessed, five had detectable O6-AlkG levels (mean ± SD 1.24 ± 0.25 O6-meG equivalents/μg DNA. This study shows the potential usefulness of the ASB assay to detect and quantify total O6-AlkGs in human DNA samples.

Details

Title
Development and Application of a Slot-Blot Assay Using the Damage Sensing Protein Atl1 to Detect and Quantify O6-Alkylated Guanine Bases in DNA
Author
Yaakub, Hanum 1   VIAFID ORCID Logo  ; Howell, Anthony 2 ; Margison, Geoffrey P 1   VIAFID ORCID Logo  ; Povey, Andrew C 1   VIAFID ORCID Logo 

 Epidemiology and Public Health Group, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; [email protected] (H.Y.); [email protected] (G.P.M.) 
 Prevent Breast Cancer Centre, Wythenshawe Hospital Manchester Universities Foundation Trust, Wythenshawe, Manchester M23 9LT, UK; [email protected]; Manchester Breast Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4GJ, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK 
First page
649
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23056304
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110704491
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.