It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent developments have highlighted the critical role that computer-aided diagnosis (CAD) systems play in analyzing whole-slide digital histopathology images for detecting gastric cancer (GC). We present a novel framework for gastric histology classification and segmentation (GHCS) that offers modest yet meaningful improvements over existing CAD models for GC classification and segmentation. Our methodology achieves marginal improvements over conventional deep learning (DL) and machine learning (ML) models by adaptively focusing on pertinent characteristics of images. This contributes significantly to our study, highlighting that the proposed model, which performs well on normalized images, is robust in certain respects, particularly in handling variability and generalizing to different datasets. We anticipate that this robustness will lead to better results across various datasets. An expectation-maximizing Naïve Bayes classifier that uses an updated Gaussian Mixture Model is at the heart of the suggested GHCS framework. The effectiveness of our classifier is demonstrated by experimental validation on two publicly available datasets, which produced exceptional classification accuracies of 98.87% and 97.28% on validation sets and 98.47% and 97.31% on test sets. Our framework shows a slight but consistent improvement over previously existing techniques in gastric histopathology image classification tasks, as demonstrated by comparative analysis. This may be attributed to its ability to capture critical features of gastric histopathology images better. Furthermore, using an improved Fuzzy c-means method, our study produces good results in GC histopathology picture segmentation, outperforming state-of-the-art segmentation models with a Dice coefficient of 65.21% and a Jaccard index of 60.24%. The model’s interpretability is complemented by Grad-CAM visualizations, which help understand the decision-making process and increase the model’s trustworthiness for end-users, especially clinicians.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Central Punjab, Faculty of Information Technology & Computer Science, Lahore, Pakistan (GRID:grid.444936.8) (ISNI:0000 0004 0608 9608)
2 Khalifa University, Khalifa University Center for Autonomous Robotic Systems (KUCARS) and Department of Mechanical & Nuclear Engineering, Abu Dhabi, United Arab Emirates (GRID:grid.440568.b) (ISNI:0000 0004 1762 9729)
3 Dongguk University, Division of Electronics and Electrical Engineering, Seoul, Korea (GRID:grid.255168.d) (ISNI:0000 0001 0671 5021)
4 Bahria University, Department of Computer Science, School of Engineering and Applied Sciences, Islamabad, Pakistan (GRID:grid.444787.c) (ISNI:0000 0004 0607 2662)