Content area

Abstract

Fog computing is of particular interest to Internet of Things (IoT), where inexpensive simple devices can offload their computation tasks to nearby Fog Nodes. Online scheduling in such fog networks is challenging due to stochastic network states such as task arrivals, wireless channels and location of nodes. In this paper, we focus on the problem of optimizing computation offloading management, arrival data admission control and resource scheduling, in order to improve the overall system performance, in terms of throughput fairness, power efficiency, and average mean of queue backlogs. We investigate this problem for a fog network with homogeneous mobile Fog Nodes, serving multiple wireless devices, controlled by a Fog Control Node. By formulating the problem as a stochastic optimization problem, maximizing utility-power efficiency, defined as achievable utility per-unit power consumption, subject to queue backlog stability, we modify Lyapunov optimization techniques to deal with the fractional form of utility-power efficiency function. Then we propose an online utility-power efficient task scheduling algorithm, which is asymptotically optimal. Our online task scheduling algorithm can achieve the theoretical [O(1/V), O(V)] trade-off between utility-power efficiency and average mean of queue backlogs,

Details

1009240
Title
Online and Utility-Power Efficient Task Scheduling in Homogeneous Fog Networks
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Sep 27, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-09-30
Milestone dates
2024-09-27 (Submission v1)
Publication history
 
 
   First posting date
30 Sep 2024
ProQuest document ID
3111342190
Document URL
https://www.proquest.com/working-papers/online-utility-power-efficient-task-scheduling/docview/3111342190/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-10-01
Database
ProQuest One Academic