Content area

Abstract

The aim of this article is to present a hybrid finite element/finite difference method which is used for reconstructions of electromagnetic properties within a realistic breast phantom. This is done by studying the mentioned properties' (electric permittivity and conductivity in this case) representing coefficients in a constellation of Maxwell's equations. This information is valuable since these coefficient can reveal types of tissues within the breast, and in applications could be used to detect shapes and locations of tumours. Because of the ill-posed nature of this coefficient inverse problem, we approach it as an optimization problem by introducing the corresponding Tikhonov functional and in turn Lagrangian. These are then minimized by utilizing an interplay between finite element and finite difference methods for solutions of direct and adjoint problems, and thereafter by applying a conjugate gradient method to an adaptively refined mesh.

Details

1009240
Identifier / keyword
Title
A hybrid finite element/finite difference method for reconstruction of dielectric properties of conductive objects
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Sep 30, 2024
Section
Computer Science; Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-10-01
Milestone dates
2024-09-30 (Submission v1)
Publication history
 
 
   First posting date
01 Oct 2024
ProQuest document ID
3111728313
Document URL
https://www.proquest.com/working-papers/hybrid-finite-element-difference-method/docview/3111728313/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-10-02
Database
ProQuest One Academic