Content area

Abstract

We present an arrow calculus with operations and handlers and its operational and denotational semantics. The calculus is an extension of Lindley, Wadler and Yallop’s arrow calculus.

The denotational semantics is given using a strong (pro)monad \(\mathcal{A}\) in the bicategory of categories and profunctors. The construction of this strong monad \(\mathcal{A}\) is not trivial because of a size problem. To build denotational semantics, we investigate what \(\mathcal{A}\)-algebras are, and a handler is interpreted as an \(\mathcal{A}\)-homomorphisms between \(\mathcal{A}\)-algebras.

The syntax and operational semantics are derived from the observations on \(\mathcal{A}\)-algebras. We prove the soundness and adequacy theorem of the operational semantics for the denotational semantics.

Details

Title
Algebraic effects and handlers for arrows
Author
Sanada, Takahiro 1   VIAFID ORCID Logo 

 Research Institute for Mathematical Sciences, Kyoto University, Japan, (e-mail: [email protected]
Publication title
Volume
34
Publication year
2024
Publication date
Oct 2024
Publisher
Cambridge University Press
Place of publication
Cambridge
Country of publication
United Kingdom
ISSN
09567968
e-ISSN
14697653
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-10-03
Milestone dates
2023-06-21 (Received); 2024-03-15 (Revised); 2024-04-28 (Accepted)
Publication history
 
 
   First posting date
03 Oct 2024
ProQuest document ID
3112342489
Document URL
https://www.proquest.com/scholarly-journals/algebraic-effects-handlers-arrows/docview/3112342489/se-2?accountid=208611
Copyright
© The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-10-03
Database
ProQuest One Academic