It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Feature selection is a critical preprocessing technique used to remove irrelevant and redundant features from datasets while maintaining or improving the accuracy of machine learning models. Recent advancements in this area have primarily focused on wrapper-based feature selection methods, which leverage metaheuristic search algorithms (MSAs) to identify optimal feature subsets. In this paper, we propose a novel wrapper-based feature selection method utilizing the Triangulation Topology Aggregation Optimizer (TTAO), a newly developed algorithm inspired by the geometric properties of triangular topology and similarity. To adapt the TTAO for binary feature selection tasks, we introduce a conversion mechanism that transforms continuous decision variables into binary space, allowing the TTAO—which is inherently designed for real-valued problems—to function efficiently in binary domains. TTAO incorporates two distinct search strategies, generic aggregation and local aggregation, to maintain an effective balance between global exploration and local exploitation. Through extensive experimental evaluations on a wide range of benchmark datasets, TTAO demonstrates superior performance over conventional MSAs in feature selection tasks. The results highlight TTAO's capability to enhance model accuracy and computational efficiency, positioning it as a promising tool to advance feature selection and support industrial innovation in data-driven tasks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer