Abstract

For mitogen-activated protein kinases (MAPKs) a shallow surface—distinct from the substrate binding pocket—called the D(ocking)-groove governs partner protein binding. Screening of broad range of Michael acceptor compounds identified a double-activated, sterically crowded cyclohexenone moiety as a promising scaffold. We show that compounds bearing this structurally complex chiral warhead are able to target the conserved MAPK D-groove cysteine via reversible covalent modification and interfere with the protein-protein interactions of MAPKs. The electronic and steric properties of the Michael acceptor can be tailored via different substitution patterns. The inversion of the chiral center of the warhead can reroute chemical bond formation with the targeted cysteine towards the neighboring, but less nucleophilic histidine. Compounds bind to the shallow MAPK D-groove with low micromolar affinity in vitro and perturb MAPK signaling networks in the cell. This class of chiral, cyclic and enhanced 3D shaped Michael acceptor scaffolds offers an alternative to conventional ATP-competitive drugs modulating MAPK signaling pathways.

Póti et al developed cyclic, tuneable and chiral warheads against the protein-protein interaction surface of mitogen-activated protein kinases, which form a reversible covalent bond with nucleophilic surface residues to modulate cellular signaling networks.

Details

Title
Targeting a key protein-protein interaction surface on mitogen-activated protein kinases by a precision-guided warhead scaffold
Author
Póti, Ádám Levente 1   VIAFID ORCID Logo  ; Bálint, Dániel 2   VIAFID ORCID Logo  ; Alexa, Anita 3   VIAFID ORCID Logo  ; Sok, Péter 3   VIAFID ORCID Logo  ; Ozsváth, Kristóf 4 ; Albert, Krisztián 3   VIAFID ORCID Logo  ; Turczel, Gábor 5   VIAFID ORCID Logo  ; Magyari, Sarolt 3   VIAFID ORCID Logo  ; Ember, Orsolya 3   VIAFID ORCID Logo  ; Papp, Kinga 3 ; Király, Sándor Balázs 6 ; Imre, Tímea 7 ; Németh, Krisztina 7 ; Kurtán, Tibor 6   VIAFID ORCID Logo  ; Gógl, Gergő 3 ; Varga, Szilárd 4 ; Soós, Tibor 4   VIAFID ORCID Logo  ; Reményi, Attila 3   VIAFID ORCID Logo 

 Research Centre for Natural Sciences, Biomolecular Interaction Research Group, Institute of Organic Chemistry, Budapest, Hungary (GRID:grid.425578.9) (ISNI:0000 0004 0512 3755); Eötvös Loránd University, Doctoral School of Biology, Budapest, Hungary (GRID:grid.5591.8) (ISNI:0000 0001 2294 6276) 
 Research Centre for Natural Sciences, Organocatalysis Research Group, Institute of Organic Chemistry, Budapest, Hungary (GRID:grid.425578.9) (ISNI:0000 0004 0512 3755); Eötvös Loránd University, Hevesy György PhD School of Chemistry, Budapest, Hungary (GRID:grid.5591.8) (ISNI:0000 0001 2294 6276) 
 Research Centre for Natural Sciences, Biomolecular Interaction Research Group, Institute of Organic Chemistry, Budapest, Hungary (GRID:grid.425578.9) (ISNI:0000 0004 0512 3755) 
 Research Centre for Natural Sciences, Organocatalysis Research Group, Institute of Organic Chemistry, Budapest, Hungary (GRID:grid.425578.9) (ISNI:0000 0004 0512 3755) 
 Research Centre for Natural Sciences, NMR Research Laboratory, Centre for Structural Science, Budapest, Hungary (GRID:grid.425578.9) (ISNI:0000 0004 0512 3755) 
 University of Debrecen, Department of Organic Chemistry, Debrecen, Hungary (GRID:grid.7122.6) (ISNI:0000 0001 1088 8582) 
 Research Centre for Natural Sciences, MS Metabolomic Research Laboratory, Centre for Structural Science, Budapest, Hungary (GRID:grid.425578.9) (ISNI:0000 0004 0512 3755) 
Pages
8607
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3112974201
Copyright
© The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.