Content area

Abstract

Testing healthcare Internet of Things (IoT) applications at system and integration levels necessitates integrating numerous medical devices of various types. Challenges of incorporating medical devices are: (i) their continuous evolution, making it infeasible to include all device variants, and (ii) rigorous testing at scale requires multiple devices and their variants, which is time-intensive, costly, and impractical. Our collaborator, Oslo City's health department, faced these challenges in developing automated test infrastructure, which our research aims to address. In this context, we propose a meta-learning-based approach (MeDeT) to generate digital twins (DTs) of medical devices and adapt DTs to evolving devices. We evaluate MeDeT in OsloCity's context using five widely-used medical devices integrated with a real-world healthcare IoT application. Our evaluation assesses MeDeT's ability to generate and adapt DTs across various devices and versions using different few-shot methods, the fidelity of these DTs, the scalability of operating 1000 DTs concurrently, and the associated time costs. Results show that MeDeT can generate DTs with over 96% fidelity, adapt DTs to different devices and newer versions with reduced time cost (around one minute), and operate 1000 DTs in a scalable manner while maintaining the fidelity level, thus serving in place of physical devices for testing.

Details

1009240
Business indexing term
Identifier / keyword
Title
MeDeT: Medical Device Digital Twins Creation with Few-shot Meta-learning
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 4, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-17
Milestone dates
2024-10-04 (Submission v1); 2024-12-04 (Submission v2)
Publication history
 
 
   First posting date
17 Dec 2024
ProQuest document ID
3113848364
Document URL
https://www.proquest.com/working-papers/medet-medical-device-digital-twins-creation-with/docview/3113848364/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-18
Database
ProQuest One Academic