It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Thoracic bulky esophageal cancer shrinks during radiotherapy, changing the location and shape of the surrounding heart and lungs. The current study aimed to explore how replanning by volumetric-modulated arc radiotherapy (VMAT) and three-dimensional conformal radiotherapy (3DCRT) influences the target coverage and dose to organs at risk in locally advanced unresectable middle to lower thoracic esophageal cancer. We retrospectively collected CT simulation images of initial and boost radiotherapy plans for locally advanced unresectable thoracic esophageal cancer in 17 consecutive patients. First, we created boost plans of 20 Gy using 3DCRT and VMAT on the initially acquired CT images. Second, we replicated the process on CT images acquired after 20–40 Gy of radiotherapy. We then compared non-replanned boost radiotherapy plans with replanned boost plans. Replanned radiotherapy delivered more conformal doses to the target and reduced heart and lung doses. VMAT reduced more irradiated mean doses to the heart than 3DCRT in the case of replanning (1.7 and 1.1 Gy, p < 0.001). Replanning to accommodate tumor shrinkage during radiotherapy effectively lowers the irradiated doses to the heart and lungs in patients with locally advanced unresectable middle to lower thoracic esophageal cancer, especially those treated with VMAT.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Kyoto University, Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto, Japan (GRID:grid.258799.8) (ISNI:0000 0004 0372 2033)