Full Text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to reduce aviation's CO2 emissions and comply with current climate targets, the European Union plans a mandatory quota of 2 % sustainable aviation fuel (SAF) by 2025, rising up to 70 % SAF by 2050. In addition to a reduction of life cycle CO2 emissions, the use of SAF can also have a positive impact on particle emissions and contrail properties. In this study we present observations from the ECLIF3 (Emission and CLimate Impact of alternative Fuels) aircraft campaign, which investigated exhaust and contrail characteristics of an Airbus A350-941 equipped with Rolls-Royce Trent XWB-84 engines. For the first time, non-volatile and total particle emissions of 100 % HEFA-SPK (hydroprocessed esters and fatty acids–synthetic paraffinic kerosene) SAF, a blended fuel and a reference Jet A-1 fuel were measured in flight. A maximum reduction in non-volatile particle number emissions of 41 % compared to the reference Jet A-1 fuel was measured at low cruise engine power settings when using 100 % HEFA-SPK. The reduction decreases to 29 % for typical cruise engine settings and to 22 % at high cruise engine power settings. The size of non-volatile particles was slightly smaller for HEFA-SPK compared to Jet A-1. We show a comprehensive analysis of the hydrogen content of globally available fuels. Our results demonstrate the impact of the fuel composition in terms of its aromatic, hydrogen, and sulfur content as well as of the effect of engine power settings on particle emissions. We demonstrate that the use of HEFA-SPK can significantly reduce particle emissions and thus contrail ice particles and therefore can provide an aviation climate benefit.

Details

Title
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Author
Dischl, Rebecca 1   VIAFID ORCID Logo  ; Sauer, Daniel 2   VIAFID ORCID Logo  ; Voigt, Christiane 1   VIAFID ORCID Logo  ; Harlaß, Theresa 2 ; Sakellariou, Felicitas 2 ; Märkl, Raphael 1   VIAFID ORCID Logo  ; Schumann, Ulrich 2   VIAFID ORCID Logo  ; Scheibe, Monika 2 ; Kaufmann, Stefan 2   VIAFID ORCID Logo  ; Roiger, Anke 2 ; Dörnbrack, Andreas 2   VIAFID ORCID Logo  ; Renard, Charles 3 ; Gauthier, Maxime 3   VIAFID ORCID Logo  ; Swann, Peter 4 ; Madden, Paul 4 ; Luff, Darren 4 ; Johnson, Mark 4 ; Ahrens, Denise 5 ; Sallinen, Reetu 6 ; Schripp, Tobias 7   VIAFID ORCID Logo  ; Eckel, Georg 8 ; Bauder, Uwe 8   VIAFID ORCID Logo  ; Patrick Le Clercq 8 

 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany; Institute of Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany 
 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany 
 Airbus Operations SAS, Toulouse, France 
 Rolls-Royce plc., Derby, UK 
 Rolls-Royce Deutschland, Dahlewitz, Germany 
 Neste Corporation, R&D, Porvoo, Finland 
 Deutsches Zentrum für Luft- und Raumfahrt, Institute of Combustion Technology, Stuttgart, Germany; now at: Center for Aviation, ZHAW School of Engineering, Winterthur, Switzerland 
 Deutsches Zentrum für Luft- und Raumfahrt, Institute of Combustion Technology, Stuttgart, Germany 
Pages
11255-11273
Publication year
2024
Publication date
2024
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3114639798
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.