Abstract
Background
RNA-sequencing technology provides an effective tool for understanding miRNA regulation in complex human diseases, including cancers. A large number of computational methods have been developed to make use of bulk and single-cell RNA-sequencing data to identify miRNA regulations at the resolution of multiple samples (i.e. group of cells or tissues). However, due to the heterogeneity of individual samples, there is a strong need to infer miRNA regulation specific to individual samples to uncover miRNA regulation at the single-sample resolution level.
Results
Here, we develop a framework, Scan, for scanning sample-specific miRNA regulation. Since a single network inference method or strategy cannot perform well for all types of new data, Scan incorporates 27 network inference methods and two strategies to infer tissue-specific or cell-specific miRNA regulation from bulk or single-cell RNA-sequencing data. Results on bulk and single-cell RNA-sequencing data demonstrate the effectiveness of Scan in inferring sample-specific miRNA regulation. Moreover, we have found that incorporating the prior information of miRNA targets can generally improve the accuracy of miRNA target prediction. In addition, Scan can contribute to construct cell/tissue correlation networks and recover aggregate miRNA regulatory networks. Finally, the comparison results have shown that the performance of network inference methods is likely to be data-specific, and selecting optimal network inference methods is required for more accurate prediction of miRNA targets.
Conclusions
Scan provides a useful method to help infer sample-specific miRNA regulation for new data, benchmark new network inference methods and deepen the understanding of miRNA regulation at the resolution of individual samples.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




