Content area

Abstract

Aim

To explore, using network pharmacology and RNA-seq technologies, potential active targets and mechanisms underpinning Radix Bupleuri’s effectiveness during sepsis treatment.

Methods

Following the Sepsis-3.0 criteria, the research cohort, comprising 23 sepsis patients and 10 healthy participants, was obtained from public databases. Peripheral blood samples were collected and subjected to RNA-seq analysis. Active ingredients and potential targets of Radix Bupleuri were identified using the Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine 2.0 (BATMAN-TCM 2.0) database and TCMSP database. Subsequently, protein-protein interaction (PPI) network construction, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted to explore cross-targets between disease and drugs. Survival analysis of key targets was performed using the GSE65682 dataset, and single-cell RNA-seq was employed for cellular localization analysis of key genes. Finally, molecular docking and Molecular dynamics simulation of the core target was conducted.

Results

Differential expression analysis revealed 4253 genes associated with sepsis. Seventy-six active components and 1030 potential targets of Radix Bupleuri were identified. PPI, GO, and pathway enrichment analyses indicated involvement in the regulation of transmembrane transport, monatomic ion transport, and MAPK signaling. Survival curve analysis identified PIK3CD, ARRB2, SUCLG1, and SPI1 as key targets associated with lower mortality in the high expression group, while higher mortality was observed in the high PNP and FURIN expression groups. Single-cell RNA sequencing unveiled the cellular localization of PIK3CD, PNP, SPI1, and FURIN within macrophages, while ARRB2 and SUCLG1 exhibited localization in both macrophages and T-cells. Subsequent molecular docking and Molecular dynamics simulation indicated a potential binding interaction for Carvone-PIK3CD, Encecalin-ARRB2, Lauric Acid-SUCLG1, Pulegone-FURIN, Nootkatone-SPI1, and Saikogenin F-PNP.

Conclusion

Radix Bupleuri could modulate immune function by affecting PIK3CD, ARRB2, SUCLG1, FURIN, SPI1, and PNP, thereby potentially improving the prognosis of sepsis.

Details

1009240
Business indexing term
Title
Exploring the potential mechanism of Radix Bupleuri in the treatment of sepsis: a study based on network pharmacology and molecular docking
Volume
24
Pages
1-19
Publication year
2024
Publication date
2024
Section
Research
Publisher
Springer Nature B.V.
Place of publication
London
Country of publication
Netherlands
Publication subject
e-ISSN
26627671
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-10-01
Milestone dates
2024-02-28 (Received); 2024-09-09 (Accepted); 2024-10-01 (Published)
Publication history
 
 
   First posting date
01 Oct 2024
ProQuest document ID
3115118514
Document URL
https://www.proquest.com/scholarly-journals/exploring-potential-mechanism-i-radix-bupleuri/docview/3115118514/se-2?accountid=208611
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-03-31
Database
ProQuest One Academic