It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Purpose
To investigate the application value of support vector machine (SVM) model based on diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting isocitrate dehydrogenase 1(IDH-1) mutation and Ki-67 expression in glioma.
Methods
The DWI, DCE and APTW images of 309 patients with glioma confirmed by pathology were retrospectively analyzed and divided into the IDH-1 group (IDH-1(+) group and IDH-1(-) group) and Ki-67 group (low expression group (Ki-67 ≤ 10%) and high expression group (Ki-67 > 10%)). All cases were divided into the training set, and validation set according to the ratio of 7:3. The training set was used to select features and establish machine learning models. The SVM model was established with the data after feature selection. Four single sequence models and one combined model were established in IDH-1 group and Ki-67 group. The receiver operator characteristic (ROC) curve was used to evaluate the diagnostic performance of the model. Validation set data was used for further validation.
Results
Both in the IDH-1 group and Ki-67 group, the combined model had better predictive efficiency than single sequence model, although the single sequence model had a better predictive efficiency. In the Ki-67 group, the combined model was built from six selected radiomics features, and the AUC were 0.965 and 0.931 in the training and validation sets, respectively. In the IDH-1 group, the combined model was built from four selected radiomics features, and the AUC were 0.997 and 0.967 in the training and validation sets, respectively.
Conclusion
The radiomics model established by DWI, DCE and APTW images could be used to detect IDH-1 mutation and Ki-67 expression in glioma patients before surgery. The prediction performance of the radiomics model based on the combination sequence was better than that of the single sequence model.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer