It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Esophageal squamous cell carcinoma (ESCC) is often diagnosed at advanced stages due to the inherent limitations of current screening methodologies. Central to evaluating tumor invasion and prognostic assessment in ESCC is the integrity of the basement membrane (BM). However, current research on the implications of BM-related genes (BMRGs) in diagnosing ESCC remains sparse.
Methods
We performed a comprehensive analysis using single-cell RNA-sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, alongside gene expression profiles acquired from GEO and The Cancer Genome Atlas (TCGA) databases. This identified differentially expressed BMRGs in ESCC. Employing LASSO, RF, and SVM-RFE, we selected potential BM biomarkers and crafted a diagnostic nomogram for ESCC, validated by ROC curves and AUC values. We also explored immune infiltration and biological mechanisms through consensus clustering and GSVA, and utilized single cell trajectory analysis and GSCALite to study gene distributions and pathways. In vitro experiments further elucidated the role of these genes in ESCC carcinogenesis.
Results
Here, we discovered that ESCC cell types exhibited markedly elevated BM-related scores. Our analysis pinpointed seven BM genes upregulated and linked to immune infiltration, showcasing unique gene expression profiles and varying immune cell densities across the BM-related subtypes. Furthermore, a robust positive correlation was observed between these genes expression and EMT activity. The knockdown of BGN significantly suppressed cell proliferation, migration, invasion, while also augmenting cell viability following chemotherapy drug treatment.
Conclusion
Our study identified seven key BMRGs (BGN, LAMB3, SPARC, MMP1, LUM, COL4A1, and NELL2) and established a diagnostic nomogram for ESCC. Of noteworthy significance is the discovery of BGN as a promising drug target, indicating a novel strategy for future clinical combination therapies in ESCC.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer