Content area

Abstract

Low-density parity-check (LDPC) codes form part of the IRIG-106 standard and have been successfully deployed for the Telemetry Group version of shaped-offset quadrature phase shift keying (SOQPSK-TG) modulation. Recently, LDPC code solutions have been proposed and optimized for continuous phase modulations (CPMs), including the pulse code modulation/frequency modulation (PCM/FM) and the multi-h CPM developed by the Advanced Range TeleMetry program (ARTM CPM). These codes were shown to perform around one dB from the respective channel capacities of these modulations. In this paper, we consider the effect of random puncturing of these LDPC codes to further improve spectrum efficiency. We present numerical simulation results that affirm the robust decoding performance promised by LDPC codes designed for ARTM CPM.

Details

1009240
Title
Spectrally Efficient LDPC Codes For IRIG-106 Waveforms via Random Puncturing
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Oct 8, 2024
Section
Computer Science; Electrical Engineering and Systems Science; Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-10-10
Milestone dates
2024-10-08 (Submission v1)
Publication history
 
 
   First posting date
10 Oct 2024
ProQuest document ID
3115224128
Document URL
https://www.proquest.com/working-papers/spectrally-efficient-ldpc-codes-irig-106/docview/3115224128/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-10-11
Database
ProQuest One Academic