Full Text

Turn on search term navigation

© 2024 Ul Islam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

One of the key challenges in robotics is the motion planning problem. This paper presents a local trajectory planning and obstacle avoidance strategy based on a novel sampling-based path-finding algorithm designed for autonomous vehicles navigating complex environments. Although sampling-based algorithms have been extensively employed for motion planning, they have notable limitations, such as sluggish convergence rate, significant search time volatility, a vast, dense sample space, and unsmooth search routes. To overcome the limitations, including slow convergence, high computational complexity, and unnecessary search while sampling the whole space, we have proposed the RE-RRT* (Robust and Efficient RRT*) algorithm. This algorithm adapts a new sampling-based path-finding algorithm based on sampling along the displacement from the initial point to the goal point. The sample space is constrained during each stage of the random tree’s growth, reducing the number of redundant searches. The RE-RRT* algorithm can converge to a shorter path with fewer iterations. Furthermore, the Choose Parent and Rewire processes are used by RE-RRT* to improve the path in succeeding cycles continuously. Extensive experiments under diverse obstacle settings are performed to validate the effectiveness of the proposed approach. The results demonstrate that the proposed approach outperforms existing methods in terms of computational time, sampling space efficiency, speed, and stability.

Details

Title
Trajectory optimization and obstacle avoidance of autonomous robot using Robust and Efficient Rapidly Exploring Random Tree
Author
Naeem Ul Islam  VIAFID ORCID Logo  ; Kaynat Gul; Faizullah, Faiz; Syed Sajid Ullah  VIAFID ORCID Logo  ; Ikram Syed
First page
e0311179
Section
Research Article
Publication year
2024
Publication date
Oct 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3115737787
Copyright
© 2024 Ul Islam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.