Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper investigates the ability of a relatively low cost, commercially available uncrewed aerial vehicle (UAV), the DJI Mavic 3 Multispectral, to perform cryospheric research. The performance of this UAV, where applicable, is compared to a similar but higher cost system, the DJI Matrice 350, equipped with a Micasense RedEdge-MX Multispectral dual-camera system. The Mavic 3 Multispectral was tested at three field sites: the Lemon Creek Glacier, Juneau Icefield, AK; the Easton Glacier, Mt. Baker, WA; and Bagley Basin, Mt. Baker, WA. This UAV proved capable of mapping the spatial distribution of red snow algae on the surface of the Lemon Creek Glacier using both spectral indices and a random forest supervised classification method. The UAV was able to assess the timing of snowmelt and changes in suncup morphology on snow-covered areas within the Bagley Basin. Finally, the UAV was able to classify glacier surface features using a random forest algorithm with an overall accuracy of 68%. The major advantages of this UAV are its low weight, which allows it to be easily transported into the field, its low cost compared to other alternatives, and its ease of use. One limitation would be the omission of a blue multispectral band, which would have allowed it to more easily classify glacial ice and snow features.

Details

Title
Applicability of Relatively Low-Cost Multispectral Uncrewed Aerial Systems for Surface Characterization of the Cryosphere
Author
Rand, Colby F; Khan, Alia L  VIAFID ORCID Logo 
First page
3662
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3116660554
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.