Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to energy shortages and the greenhouse effect, the efficient use of energy through phase-change materials (PCMs) is gaining increased attention. In this study, magnetic phase-change microcapsules (Mag-mc) were prepared by suspension polymerization. The shell layer of the microcapsules was formed by copolymerizing methyl methacrylate and triethoxyethylene silane, with the latter enhancing the compatibility of the shell layer with the magnetic additive. Ferric ferrous oxide modified by oleic acid (Fe3O4(m)) was added as the magnetic additive. Differential scanning calorimetry (DSC) testing revealed that the content of phase-change materials in microcapsules without and with ferric ferrous oxide were 79.77% and 96.63%, respectively, demonstrating that the addition of Fe3O4(m) improved the encapsulation efficiency and enhanced the energy storage ability of the microcapsules. Laser particle size analysis showed that the overall average particle sizes for the microcapsules without and with ferric ferrous oxide were 3.48 μm and 2.09 μm, respectively, indicating that the incorporation of magnetic materials reduced the size and distribution of the microcapsules. Thermogravimetric analysis indicated that the thermal stability of the microcapsules was enhanced by the addition of Fe3O4(m). Moreover, the infrared emissivity of the microcapsule-containing film decreased from 0.77 to 0.72 with the addition of Fe3O4(m) to the shell of microcapsules.

Details

Title
Magnetic Phase-Change Microcapsules with High Encapsulation Efficiency, Enhancement of Infrared Stealth, and Thermal Stability
Author
Chun-Wei, Chang; Zheng-Ting, Chen; Yeng-Fong Shih
First page
4778
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3116661391
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.