Content area

Abstract

Removing rain degradations in images is recognized as a significant issue. In this field, deep learning-based approaches, such as Convolutional Neural Networks (CNNs) and Transformers, have succeeded. Recently, State Space Models (SSMs) have exhibited superior performance across various tasks in both natural language processing and image processing due to their ability to model long-range dependencies. This study introduces SSM to image deraining with deraining-specific enhancements and proposes a Deraining Frequency-Enhanced State Space Model (DFSSM). To effectively remove rain streaks, which produce high-intensity frequency components in specific directions, we employ frequency domain processing concurrently with SSM. Additionally, we develop a novel mixed-scale gated-convolutional block, which uses convolutions with multiple kernel sizes to capture various scale degradations effectively and integrates a gating mechanism to manage the flow of information. Finally, experiments on synthetic and real-world rainy image datasets show that our method surpasses state-of-the-art methods. Code is available at https://github.com/ShugoYamashita/DFSSM.

Details

1009240
Title
Image Deraining with Frequency-Enhanced State Space Model
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 8, 2024
Section
Computer Science; Electrical Engineering and Systems Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-10
Milestone dates
2024-05-26 (Submission v1); 2024-05-30 (Submission v2); 2024-10-12 (Submission v3); 2024-12-08 (Submission v4)
Publication history
 
 
   First posting date
10 Dec 2024
ProQuest document ID
3116757434
Document URL
https://www.proquest.com/working-papers/image-deraining-with-frequency-enhanced-state/docview/3116757434/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-11
Database
ProQuest One Academic